
NOTES ON SYMPLECTIC GEOMETRY

KELLER VANDEBOGERT

Abstract. These notes are intended to be an example oriented
guide in symplectic geometry. They are by no means an introduc-
tion, with many fundamental definitions and theorems assumed.
The notation is not completely standard, and comes heavily from
Souriau’s book ”Structure of Dynamical System: A Symplectic
View of Physics.” The material of these notes was motivated and
proofread by Francois Ziegler (Georgia Southern University).

Notation: All manifolds and Lie groups are understood to be Haus-

dorff and countable at ∞ (they may be disconnected). If G is a Lie

group, its Lie algebra will be denoted g. If G acts on a manifold X, then

there is an induced infinitesimal action by the Lie algebra g, defined

by

Z(x) =
d

dt
exp(tZ)x|t=0

We use

G(x), g(x), Gx, gx

to denote the G-orbit of x, its tangent space at x, the stabilizer of x in

G, and the stabilizer of x in g. We will have a concise and understood

notation for actions of G on TqG and T ∗qG.

When δq ∈ TqG, we have that (Lg denotes the left action)

gδq = Lg∗(q)(δq)

And similarly, given p ∈ T ∗qG, define gp to be the map such that

〈gp, δq〉 := 〈p, Lg−1∗(q)(δq)〉 = 〈p, g−1δq〉
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Similarly, right actions are defined by the above with Lg replaced by

the right action Rg. Finally, the coadjoint action will be denoted g(p) =

gpg−1, p ∈ T ∗qG.

1. Theorem of Kirillov-Kostant-Souriau

We begin with a theorem that gives a strong characterization of

symplectic manifolds. The section after this will use this to classify

coadjoint orbits and give these orbits a Hamiltonian G-space structure.

Definition 1.1. The Maurer-Cartan 1-form on GL(n) is defined by

Θ(δg) = g−1δg

where δg ∈ TgGL(n).

Proposition 1.2. If d denotes the exterior derivative, we have

dΘ(δg, δ′g) = [g−1δg, g−1δ′g]

([·, ·] denotes the Lie Bracket)

Proof. This follows immediately. Recall that by deriving g · g−1 = Id,

we find δ(g−1) = −g−1 · δg · g−1. Hence,

dΘ(δg, δ′g) = δ(g−1)δ′g − δ′(g−1)δg

= −g−1 · δg · g−1δ′g + g−1 · δ′g · g−1δg

= [g−1δg, g−1δ′g]

(1.1)

as asserted. �

Theorem 1.3. [Kirillov-Kostant-Souriau]

(1) Every coadjoint orbit X of a Lie group G is a homogeneous

symplectic manifold when endowed with the KKS 2-form defined
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by

σ(Z(x), Z ′(x)) = 〈x, [Z ′, Z]〉

where x ∈ g∗, Z, Z ′ ∈ g.

(2) Conversely, every homogeneous symplectic manifold of a con-

nected Lie group is, up to a possible covering, a coadjoint orbit

of some central extension of G.

Proof. We prove (1) first. This will consist of showing that σ is well-

defined, closed, and nondegenerate, and that the action of G preserves

this form (that is, g∗σ = σ). Also note that we may assume without

loss of generality that G is a matrix group.

The fact that σ is well defined follows immediately, as

〈x, [Z ′, Z]〉 = 〈Z(x), Z ′〉 = −〈Z ′(x), Z〉

by recalling adZ′Z = [Z ′Z]. Now, suppose that σ(Z(x), ·) = 〈Z(x), ·〉 =

0 everywhere. We then immediately see that Z(x) must be identically

0, and similarly for the case of Z ′(x).

We now proceed to show that this form is closed. Since X is an orbit,

X = G(x0) for some X0 ∈ g∗. Consider the projection π : G → X

which takes g 7→ g(x0). If we can show that the pullback by this action

is closed, then we will deduce immediately that σ is itself closed. Hence,

given tangent vectors δg = Zg, δ′g = Z ′g for Z, Z ′ ∈ g, we compute
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π∗σ(δg, δ′g) = σ(g∗(Zg), π∗(Z
′g))

= σ(Z(π(g)), Z ′(π(g))

= 〈g(x0), [Z ′, Z]〉

= 〈x0, g
−1[Z ′, Z]g〉

= 〈x0, [g
−1Z ′g, g−1Zg]〉

= 〈x0, [gδ
′g, g−1δg]〉

= 〈x0, dΘ(δg, δ′g)〉

(1.2)

where Θ is the Maurer-Cartan 1-form as already introduced. Hence, we

see π∗σ = d〈x0,Θ〉. This form is closed and exact, and by naturality

of pullbacks and exterior differentiation, dπ∗σ = π∗dσ = 0, that is,

dσ = 0.

It remains to show that σ is G-invariant. First, observe (Lg denotes

the left-action of g)

g∗(Z(x)) = DLg

(
d

dt
eZtx|t=0

)
=

d

dt
(getZg−1)|t=0(g(x))

= (AdgZ)(g(x))

Using this,

(g∗σ)(Z(x), Z ′(x)) = σ(g∗(Z(x)), g∗(Z
′(x))

= σ((AdgZ)(g(x)), (AdgZ
′)(g(x)))

= 〈g(x), [AdgZ
′,AdgZ]〉

= 〈x,Adg−1Adg[Z
′, Z]〉

= 〈x, [Z ′, Z]〉 = σ(Z(x), Z ′(x))

(1.3)

So this action preserves σ.
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Conversely, suppose that (X, σ) is a symplectic manifold with a tran-

sitive, σ-preserving groups action by G. Then, the induced infinitesimal

action preserves σ, that is, iZσ = 0. Since these forms are closed, they

are locally exact, and hence up to some coverings of X and G, we may

assume these form are exact. This is because there exist universal cov-

erings for X and G for which the above 1-forms will pull back closed

forms. However, on a simply connected space, any locally exact form

is globally exact. Therefore there exists a moment map, however it is

not necessarily equivariant.

Consider the following construction: let g denote pair (h, Z) ∈ C∞(X)×

g such that Z = dragh (dragh denotes symplectic gradient). We have

the exact sequence

0 −→ R −→ g −→ g −→ 0

where second map denotes the second projection on g, and our bracket

is [(h, Z), (h′, Z ′)] = ({h, h′}, [Z,Z ′]). The corresponding Lie group G

will act on X via the action by G and we have moment map Φ defined

by 〈Φ(x), (h, Z)〉 = h. Then, by definition

iZσ = idraghσ

= −dh

= −d〈Φ(x), Z〉

So that Φ is indeed a moment map. By construction,

{〈Φ(x), (h, Z)〉, 〈Φ(x), (h′, Z ′)〉} = {h, h′}

= 〈Φ(x), [(Z, h), Z ′, h′)]〉
(1.4)

Yielding equivariance, since the above by definition says

σ(Z(x), Z
′
(x)) = 〈Φ(x), [Z,Z

′
]〉
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So that σ = Φ∗σKKS (see 1.5 below). Finally, using the fact that σ

is nondegenerate, we have that 〈DΦ(x)(δg), g〉 = σ(δg, g(x)), so that

DΦ(x) has trivial kernel. But then Φ : G(x) → G(Φ(x)) is an immer-

sion, and hence a local homeomorphism, giving that Φ is a covering

map between these two homogeneous spaces.

�

We have an obvious corollary of the above proof:

Corollary 1.4. If G is a matrix group with x0 ∈ g∗, then when x =

g(x0) for x ∈ X = G(x0):

σ(δx, δ′x) = 〈x0, δ(g
−1)δ′g − δ′(g−1)δg〉

= 〈x, δgδ′(g−1)− δ′gδ(g−1)〉
(1.5)

Proposition 1.5. Given any equivariant moment map Φ on a Hamil-

tonian G-space (X, σ,Φ), we have

σ = Φ∗σKKS

where σKKS is the 2-form of 1.3.

Proof. By definition of moment map, we have that for Z, Z ′ ∈ g,

σ(Z(x), Z ′(x)) = −d〈Φ(x)(Z ′(x)), Z(x)〉. Using this with equivariance:

σ(Z(x), Z ′(x)) = −d〈Φ(x)(Z ′(x)), Z(x)〉

= −〈Z ′(Φ(x)), Z〉

= 〈Φ(x), [Z ′, Z]〉

= σKKS(Z(Φ(x)), Z ′(Φ(x)))

= σKKS(Φ∗(Z(x)),Φ∗(Z(x)))

= Φ∗σKKS(Z(x), Z ′(x))

(1.6)

whence the result.
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�

We now proceed to compute examples using the above theorem.

2. Examples

For given group G, identify all coadjoint orbits and express

as a Hamiltonian G-space.

Special Orthogonal Group.

Identifying Orbits: Set G = SO(3). The Lie Algebra is g = {j(α) |

α ∈ R3}, found by deriving the identity gg = I.

Note that g ∼= R3, so using the standard basis ei we associate to

g∗ ∼= R3 the dual basis ei. Then, our dual pairing simply becomes the

inner product:

〈`, j(α)〉 = 〈`, α〉

To find the coadjoint action ofG, we first need to show that Adg(j(α)) =

j(gα). First note that given g ∈ SO(3) and arbitrary u, v, w ∈ R3, we

see:

〈gu, g(v × w)〉 = vol(gu, gv, gw) = 〈gu, (gv)× (gw)〉

Hence, if g ∈ SO(3), g distributes over cross products. Using this,

given β ∈ R3:

Adg(j(α))β = g
(
α× (gβ)

)
= (gα)× β = j(gα)β
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Since β ∈ R3 was arbitrary, we deduce that Adg(j(α)) = j(gα).

Once we have this, the coadjoint action is easily computed. We see:

〈g(`), j(α)〉 = 〈`,Adg−1(j(α))〉 = 〈`, j(gα)〉 = 〈`, gα〉

and the final equality is simply 〈g`, α〉. Hence, the coadjoint action

is just matrix multiplication. Our orbits are computed easily of the

form G(se3) for s ∈ R+ and the trivial orbit {0}. Explicitly, these are

spheres of radius s.

Specifying Hamiltonian G-space: Now we want to find our 2-form

σ. Given x ∈ G(se3), set x = su for u ∈ S2. Deriving etj(α)u and t = 0

gives the infinitesimal action as j(α)u = α× u.

For tangent vectors δu, δ′u to u, we can set α = u × δu and α′ =

u× δ′u. We find:

σ(j(α)(u), j(α′)(u)) = 〈x, [j(α′), j(α)]〉

= 〈su, j((u× δ′u)× (u× δu))〉

= s〈u, j(vol(u, δ′u, δu)u)〉

= svol(u, δ′u, δu)

Hence, our 2-form on each orbitG(se3) is merely σ(δu, δ′u) = −svol(u, δu, δ′u).

It remains to find a moment map in order to completely specify this

as a Hamiltonian G-space, however we can just take this to be the

inclusion map.

To see this, if Φ(x) = x, when we only need show iZσ = −d〈Φ(x), Z〉.

More precisely:

σ(Z(x), ·) = −〈·, Z〉
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We can of course find Z ′ ∈ g such that y = Z ′(x) so that

〈y, Z〉 = 〈Z ′(x), Z〉 = 〈adZ′x, Z〉

= 〈x,−adZ′Z〉

= −〈x, [Z ′, Z]〉 = σ(Z(x), Z ′(x)) = σ(Z(x), y)

As desired. Thus, our Hamiltonian G-space is the triple (S2, σ, Id).

Special Euclidean Group.

Identifying Orbits: Take G = SE(3). We know that the Lie Algebra

of the Euclidean Group consists of tuples of the form Z = (j(α), γ) ∈

R6. We identity the dual g∗ by elements of the form x = (`, p) ∈ R6. We

can define our action by choosing a dual basis similar to the previous

problem:

〈x, Z〉 := 〈l, α〉+ 〈p, γ〉

Then we can find our coadjoint action by G. Decompose our g ∈

SE(3) first as

g =

(
I c
0 1

)(
A 0
0 1

)
Then, compute the action for both matrices in the above product. We

find:
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〈(
I c
0 1

)(
`
p

)
,

(
j(α) γ

0 0

)〉
=

〈(
`
p

)
,

(
I −c
0 1

)(
j(α) γ

0 0

)(
I c
0 1

)〉

=

〈(
`
p

)
,

(
j(α) α× c+ γ

0 0

)〉
= 〈`, α〉+ 〈p, α× c+ γ〉

= 〈`, α〉+ 〈c× p, α〉+ 〈p, γ〉 (triple product)

= 〈`+ c× p, α〉+ 〈p, γ〉

(2.1)

Likewise:

〈(
A 0
0 1

)(
`
p

)
,

(
j(α) γ

0 0

)〉
=

〈(
`
p

)
,

(
A 0
0 1

)(
j(α) γ

0 0

)(
A 0
0 1

)〉

=

〈(
`
p

)
,

(
Aj(α)A Aγ

0 0

)〉

=

〈(
`
p

)
,

(
j(Aα) Aγ

0 0

)〉
= 〈`, Aα〉+ 〈p,Aγ〉

= 〈A`, α〉+ 〈Ap, γ〉

(2.2)

Hence, composing both of the above coadjoint actions yields (A, c) ·

(`, p) = (A` + c × Ap,Ap). Let s ∈ R and t ∈ R+ and consider the

orbit G(se3, ke3). Given a pair (u, r) ∈ TS2 we can complete u to an

orthogonal matrix A = (w v u) and set c = r. We then see that our

orbit becomes:

s

(
u
0

)
+ k

(
r × u
u

)
∈ TS2
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So this orbit is just a subset of TS2. If we set k = 0, then our orbit

is instead a copy of S2, and if both constants are 0 then we get the 0

orbit.

To see precisely why the above is a copy TS2, take any element in

the orbit G(x0). It is of the form (c×sAe3 +kAe3, tAe3). Set u := Ae3

and r := c− AeeAe3c. Obviously ||u|| = 1, and we also see that

〈u, r〉 = 〈Ae3, c〉 − 〈Ae3, Ae3〉〈Ae3, c〉 = 0

So that (u, r) ∈ TS2. We also have:

(
r × su+ ku

ku

)
=

(
c× sAe3 − Ae3〈Ae3, c× Ae3〉+ kAe3

kAe3

)
=

(
c× sAe3 + kAe3

kAe3

)

and the above is precisely g(x0), so G(x0) ∼= TS2.

Specifying Hamiltonian G-space: In order to find our 2-form, we

will use the following consequence of the KKS Theorem:

σ(δx, δ′x) = 〈x0, δ(g
−1)δ′g − δ′(g−1)δg〉

if x = g(x0). We have:

δ(g−1) = δ

(
A 0
0 1

)(
I −c
0 1

)
=

(
δA −Aδc− δAc
0 0

)
Now, x0 = (se3, ke3), and if g(x0) = x, we associate the element g such

that Ae3 = u and r ∈ R3 such that 〈u, r〉 = 0 (using the correspondence

with TS2 of the previous part). We compute:
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σ(δx, δ′x) =

〈(
se3

ke3

)
,

(
δA −Aδr − δAr
0 0

)(
δ′A δ′r
0 0

)
−
(
δ′A −Aδ′r − δ′Ar
0 0

)(
δA δr
0 0

)〉

=

〈(
se3

ke3

)
,

(
δAδ′A− δ′AδA δAδ′r − δ′Aδr

0 0

)〉
= 〈se3, δu× δ′u〉+ 〈ke3, δAδ

′r − δ′Aδr〉

= s〈u, δ′u× δu〉+ 〈kδ(Ae3), δ′r〉 − 〈kδ′(Ae3), δr〉

= s〈u, δ′u× δu〉+ k
(
〈δu, δ′r〉 − 〈δ′u, δr〉

)
Hence, our 2-form is σ(δx, δ′x) = s〈u, δ′u×δu〉+k

(
〈δu, δ′r〉−〈δ′u, δr〉

)
.

If we set k = 0, our orbit is S2 and we get the 2-form s〈u, δ′u× δu〉, as

expected from the previous problem.

Using this gives our Hamiltonian G-space (TS2, σ,Φ), with the mo-

ment map being the map Φ : TS2 → g∗ sending (r, u) 7→ (r × su +

ku, ku).

G is any Abelian Group.

Identifying Orbits: When G is an Abelian Lie group, we will have

trivial commutator [g, h] = 0 for all g, h ∈ G. We can then take g = G

with our exponential map just being the identity. The infinitesimal

action is just Z(g) = Z + g, since we have Z(g) = d
dt

∣∣
0
tZ + g = Z + g.

From here, the coadjoint action is simple. We have:

〈g(x), Z〉 = 〈x,Adg−1(Z)〉 = 〈x, Z〉

Hence the coadjoint action is trivial: g(x) = x for all g ∈ G, and our

orbits are just singleton sets {x}, x ∈ G.

Specifying Hamiltonian G-space: Since our orbits are merely sin-

gleton sets, we have trivial 2-form σ(δx, δ′x) = 0.
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3. Symplectic Induction

Notation: X will always denote a coadjoint orbit of the Lie

group G

Definition 3.1. We start with a quick note on convention. We have

the natural association G×g∗ = T ∗G. We consider the former set with

the left trivialization. That is,

S :G× g∗ → T ∗G

(q, x) 7→ qx
(3.1)

The above allows us to translate actions on the cotangent bundle to

actions on G × g∗. Note that the above gives that S−1(p) = (q, q−1p)

when p ∈ T ∗qG. The left trivialization gives a left action:

g(q, x) = S−1(g(S(q, x)))

= S−1(gqx)

= (gq, (gq)−1(gqx))

= (gq, x)

Where we noted that gqx ∈ T ∗gqG in order to take the inverse image.

Similarly, consider the right action by the inverse, that is, g(p) := pg−1:

g(x, q) = S−1(g(S(qx)))

= S−1(qxg−1)

= (qg−1, qg−1)−1(qxg−1))

= (qg−1, g(x))

(3.2)

In order to build intuition, consider a Lie group G and its coadjoint

action on g∗. Given a subgroup A 6 G, we want to consider conditions
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on A making the following diagram commute

(3.3) g∗
Ad∗ //

π
��

g∗

π
��

a∗
g(·)
// a∗

In order for an action G×a∗ → a∗ to exist, we must have that AdG(a) =

a, that is, A must be normal.

Definition 3.2 (Symplectic Induction). Consider a closed subgroup

H 6 G and a Hamiltonian H-space (Y, τ,Ψ). We can produce a Hamil-

tonian G-space as follows.

First, set N := T ∗G× Y endowed with 2-form ω = dσ + τ where σ

denotes the canonical 1-form. Let H act of N by setting

h(p, y) := (ph−1, h(y))

We then have moment map

ψ(p, y) = Ψ(y)− q−1p|h

We can define an induced manifold structure on

IndGHY := ψ1(0)/H

We have that ψ is a submersion, so that ψ−1(0) is a submanifold, and

the quotient by H is a manifold. The 2-form ω|ψ−1(0) vanishes precisely

on the orbits of H, so that ω descends onto some nondegenerate form

ωind.

To give this a G-space structure, we can define the action of G on

N by g(p, y) = (gp, y). This commutes with the above H action, and

the moment map can be given as



NOTES ON SYMPLECTIC GEOMETRY 15

φ(p, y) = pq−1

where p ∈ T ∗qG. This is constant on H orbits, and hence passing to the

quotient gives the G-action and moment map Φind. To get a handle on

the spaces involved, we have the following commutative diagram

(3.4) ψ−1(0)

��

// N

φ

��
IndGHY

Φind // g∗

The diagram (3.4) gives us

Proposition 3.3. Let W be any orbit in g∗. Then,

W ∩ Im(Φind) 6= ∅ ⇐⇒ W |h ∩ Im(Ψ) 6= ∅

Proof. Suppose first that W ∩ Im(Φind 6= ∅. Choose w ∈ W ∩ Im(Φind,

so that w = pq−1 for some pair (p, y) ∈ ψ−1(0), p ∈ T ∗qG.

Then, by definition, Ψ(y) = q−1p|h. The above shows that p = wq,

so that Ψ(y) = q−1(w)|h ∈ W |h. Hence, W |h ∩ Im(Ψ) 6= ∅.

Conversely, choose w|h ∈ W |h ∩ Im(Ψ). This means that w|h = Ψ(y)

for some y ∈ Y , so that the pair (qw, y) ∈ ψ−1(0). Taking the image

modulo H and then by Φind gives us

Φind(qw, y) = q(w) ∈ W

Completing the proof.

�

Definition 3.4. Ann(X) denotes the set of all Z ∈ g such that 〈X,Z〉 =

0, with 〈·, ·〉 denoting the dual pairing.
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Definition 3.5. A subalgebra a of g will be called X-abelian if [a, a] ⊂

Ann(X).

Definition 3.6. A subgroup A of the Lie group G will be called X-

abelian if A is a closed, connected subgroup with X-abelian Lie algebra

a.

Proposition 3.7. Let G be a Lie Group with A a normal X-abelian

subgroup. Then, we have an action of G on a∗ making π : g∗ → a∗

equivariant, implying that X|a is also a coadjoint orbit of G. That is,

X|a = G(p) = G/H

where X = G(x), p = x|a, and H is the stabilizer of p. In this case,

there is a unique coadjoint orbit Y of H (namely, Y = H(x|h)) such

that

(a) X = IndGHY (b) Y |a = {p}

Moreover, Y is the reduced space π−1(p)/A, π : X → h∗ is the natural

projection.

Conversely, any H-orbit Y in h∗ satisfying (b) is such that IndGHY is

isomorphic to some coadjoint orbit of g∗.

Before proving this, we will need

Lemma 3.8. In the above assumptions, we have

(1) a(x) = Ann(h)

(2) A(x) = x+ Ann(h)

(3) H(x) = η−1(H(x|h)), η : g∗ → h∗ is the natural projection.

Proof. To prove (1), it suffices to show that Ann(a(x)) = h. Let Z ∈ g.

We have:
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〈a(x), Z〉 = 〈x, [a, Z]〉

= 〈x|a, [a, Z]〉 since [a, Z] ⊂ a

= 〈Z(p), a〉

Hence, Ann(a(x)) is precisely the set of Z ∈ g such that Z(p) = 0,

which gives that exp(Z) ∈ H =⇒ Z ∈ h. We then deduce a(x) =

Ann(h).

For part (2), note that the above shows that 〈a(x), h〉 = 0, so that

a stabilizes x|h. Exponentiating yields that A must also stabilize x|h.

Hence, A(x) ⊂ x+ Ann(h), as 〈x+ Ann(h), h〉 = 0.

For the reverse inclusion, given exp(Z)(x) ∈ A(x) (Z ∈ a), we see

for Z ′ ∈ g:

〈exp(Z)(x), Z ′〉 = 〈
∞∑
n=0

ad(Z)n(x)

n!
, Z ′〉

= 〈x,
∞∑
n=0

(−1)nad(Z)n(Z ′)

n!
〉

= 〈x, Z ′ + [Z,Z ′] +
∞∑
n=2

(−1)nad(Z)n−2

n!
[Z, [Z,Z ′]]〉

Since a is an ideal, we see that [Z,Z ′] ∈ a, and since A is X-abelian,

[Z, [Z,Z ′]] ∈ Ann(X), so that

〈x,
∞∑
n=2

(−1)nad(Z)n−2

n!
[Z, [Z,Z ′]]〉 = 0

Hence, we see

〈exp(Z)(x), Z ′〉 = 〈x, Z ′ + [Z,Z ′]〉 = 〈x+ Z(x), Z ′〉

So that given x + Z(x) ∈ x + Ann(h), we see that in fact x + Z(x) =

exp(Z)(x) ∈ A(x), proving equality.
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For part (3), note that η explicitly takes x 7→ x|h, so that g∗/Ann(h) =

h∗. This implies η−1(x) = x + Ann(h) so that the result of part (2)

merely says A(x) = η−1(x|h). Since A ⊂ H, H · A = H, and by

equivariance, H(η−1(x|h)) = η−1(H(xh)), so that

H(x) = η−1(H(xh))

Completing the proof. �

Now we can prove the proposition.

Proof. Note that equivariance has already been proved by the intro-

ductory discussion. Hence, we need show that in the setting of our

proposition, the orbit is unique.

We need to prove two directions. In the first direction, we need to

show that Y := H(x|h) is such that Φind : IndGHY → X is a symplectic

diffeomorphism with Y |a = {p}. Conversely, we must prove that given

any Y satisfying the above two properties, we may deduce that Y =

H(x|h).

We begin by first assuming that Y := H(xh). It is clear that Y |a =

{p}, since we have that 〈H(x|h), a〉 = 〈x|h,AdH(a)〉. Since A is normal,

the above merely becomes x|a = p (since a ⊂ h). It remains to show

that the definition given for Φind above is a symplectic diffeomorphism.

Let us show surjectivity first. To do this, we claim that if any orbit

W is such that W |h∩Y 6= ∅, then W = X. This, when combined with

3.3 will imply that Im(Φind = X.

Proof of claim: Choose g(w)|h ∈ W |h ∩ Y , where W = G(w) for

some w ∈ g∗. Then, we see that there exists h ∈ H such that

η(g(w)) = h(x|h)
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So that, employing (3) of 3.8:

g(w) ∈ η−1(h(x|h) ⊂ η−1(H(x|h)) = H(x)

Therefore, w = g−1h(x) ∈ G(x), which means that G(w) = G(x) =⇒

W = X.

Using this claim, note that the moment map Ψ : Y → X|h is merely

the inclusion map. Hence, W |h∩Y 6= ∅ if and only if W∩Im(Φind) 6= ∅.

Since this only holds when W = X, the only orbit intersecting Im(Φind

is X, so that in fact Im(Φind = X, showing surjectivity.

Now, injectivity will follow if we can show that the preimage by Φind

of every point in X is still a singleton in IndGHY . Owing to the diagram

(3.4), we see that for x ∈ X

Φ−1
ind(x) = (ψ−1(0) ∩ φ−1(x))/H

Hence it suffices to show that ψ−1(0) ∩ φ−1(x) consists of a single H-

orbit. Now φ−1(x) is easily computed as xG× Y . Similarly, ψ−1(0) =

{(p, y) | y = q−1p|h}. Taking the intersection, we see that we must

have p = xq and q−1(x) ∈ η−1(Y ), so that

ψ−1(0) ∩ φ−1(x) = {(xq, q−1(x)|h | q ∈ Q}

Where Q is the set of all q ∈ G with q−1(x) ∈ η−1(Y ). However, this

immediately gives that Q = H by (3) of Lemma 3.8, so that the above

set is indeed a single orbit. Hence Φind is a bijection. By equivariance,

the G-action on IndGHY is transitive. Using part (2) of 1.3, we deduce

that Φind is an injective covering, hence trivially a diffeomorphism.

Conversely, assume now that Y is any orbit satisfying the above

assumptions. Since X lies in the image of Φind, we have that X|h ⊃ Y

by Proposition 3.3. This means y = g(x)|h for some x ∈ X. Projecting
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onto a∗, we see that by assumption (b), y|a = p, and by equivariance

g(x)|a = g(p). Therefore p = g(p) so that g ∈ H, giving Y = H(x)|h =

H(x|h).

Finally, to prove the last assertion, consider all fibers of the projec-

tion η : X → h∗. Points in the range are of the form g(x)|h, which

says that their preimages are of the form g(x) + Ann(h). By part (2)

of our Proposition, Ann(h) = a(x), and by transitivty of our G-action,

a(x) = a(g(x)). However, using the fact that A is normal,

g(x) + Ann(h) = g(x) + a(g(x))

= g(x) + g(a(x))

= g(x+ a(x))

= g(A(x))

= A(g(x))

(3.5)

so that every fiber of π is an A-orbit of X. By equivariance of π, we

also have that H(x) = π−1(p). Using the above, however, yields that

H(x)/A = H(x)|h, that is,

π−1(p)/A = H(x|h)

Now, in order to prove the converse, it suffices to show that the

moment map Φind is bijective onto some orbit G(x).

Let us first show surjectivity. Using 3.3, we deduce that

Im Φind =
⋃
{W | W G− orbit, W |h ∩ Y 6= ∅}

Now suppose we have two orbits G(w1), G(w2) in the above set. Then,

their restrictions to h are nonempty, and we see thatH(w1|h) = H(w2|h).

Using 3.8, this implies that H(w1) = H(w2), so that G(w1) = G(w2).

Therefore Im(Φind) ⊃ G(w1), and the reverse inequality merely follows
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by equivariance of the induced moment map. Hence we see Im(Φind) =

G(w1), showing surjectivity. Injectivity is proved exactly as above.

To show p ∈ G(w1)|h, merely note that G(w1)|a = Y |a = {p}.

�

4. Example

Computing Ind
E(2)
C {P0}. Consider the Euclidean group consisting of

matrices

(
eiA C
0 1

)
with A ∈ R, C ∈ C. We have the trivial Lie Algebra identification(

iα γ
0 0

)
with α ∈ R, γ ∈ C. We then associate our dual space g∗ = R × C, so

that T ∗G = E(2) × R × C, and our group actions will we determined

by the left trivialization as outlined previously.

Now, let us compute Ind
E(2)
C {P0} for P0 ∈ C. Note that the singleton

space is trivially a Hamiltonian G-space with Φ(P0) = P0. In this case

be have H = h = C, which we are identifying with the matrix subgroup(
1 C
0 1

)
We will define our dual pairing as〈(

L
P

)
,

(
iα γ
0 0

)〉
= Lα + Re(PC)

Computing the 2-form: We must first find out canonical 1-form

θ. This is defined by taking the dual to 〈p, δq〉, for p ∈ T ∗qG. Given

(q, x) ∈ G× g∗, we identify this with p = qx so that

θ = 〈x, q−1δq〉



22 KELLER VANDEBOGERT

We see

δq = δ

(
eiA C
0 1

)
=

(
ieiAδA δC

0 0

)
and

〈x, q−1δq〉 =

〈(
L
P

)
,

(
e−iA −e−iAC

0 1

)(
ieiAδA δC

0 0

)〉
=

〈(
L
P

)
,

(
iδA e−iAδC
0 0

)〉
= Lδα + Re(Pe−iAδC)

(4.1)

Giving our 1-form as θ = LdA + Re(PeiAdC), and upon taking the

exterior derivative, we find our 2-form

σ = dL ∧ dA+ Re(dPeiA ∧ dC)

Specifying H-action. By the construction outlined for symplectic

induction, we have that C acts on T ∗E(2) by h(p) = ph−1. Again, by

our convention with left trivialization, (q, x)h−1 = qh−1, h(x)). Hence,

we must first find the coadjoint action by C. This is found as〈(
1 C
0 1

)(
L
P

)
,

(
iα γ
0 0

)〉
=

〈(
1 C
0 1

)(
L
P

)
,

(
iα iαC + γ
0 0

)〉
= Lα− αIm(PC) + Re(Pγ)

= 〈(L− Im(PC), P ), (iα, γ)〉

So we have coadjoint action C(L, P ) = (L − Im(PC), P ). Then, we

can make z ∈ C act on an element m ∈ N = T ∗G by

z(m) =

((
eiA z − eiA
0 1

)
,

(
L− Im(Pz)

P

))
And deriving gives the infinitesimal action by h = C:

Z(m) =

((
0 −eiAZ
0 0

)
,

(
−Im(PZ)

0

))
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Computing the Moment Map: Let us compute the moment map.

We already have that Ψ(P0) = P0, so it remains to find q−1p|h, p ∈ T ∗qG.

This is not difficult, however, as identifying p = qx merely becomes the

restriction x|h. But this is simply (L, P ) restricted to P , so that

ψ(m,P0) = P0 − P

But then we can immediately find ψ−1(0) as the set

ψ−1(0) =

{((
eiA C
0 1

)
,

(
L
P0

))
| A,L ∈ R, L ∈ C

}
Restricting our 2-form σ|ψ−1(0), we find:

σ|ψ−1(0) = dL ∧ dA+ Re(dP0eiA ∧ dC)

= dL ∧ dA+ Re(iP0eiAdA ∧ dC)

= dL ∧ dA− Im(P0eiAdC) ∧ dA

= d` ∧ dA

(4.2)

Where ` = L− Im(P0eiAC).

Giving a G-space Structure to the Reduction: Since our 2-form

vanishes precisely along the orbits of H, we can realize the quotient

ψ−1(0)/H as R× S1 via the identification((
eiA C
0 1

)
,

(
L
P0

))
7→
(
L− Im(P0eiAC)

eiA

)
We give this a G-space structure via the 2-form already computed as

ω = d` ∧ dA

where ` is defined as above. We have the map φ : T ∗G→ g∗ defined by

φ(p, y) = pq−1. Recalling our convention, this gives that φ(q, x) = q(x).
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The coadjoint action is easily computed as above, so that

φ

((
eiA C
0 1

)
,

(
L
P

))
=

(
L− Im(eiAPC)

eiAP

)
Now, given an element(

L− Im(P0eiAC)
eiA

)
∈ Ind

E(2)
C {P0}

this lifts to the pair((
eiA C
0 1

)
,

(
L
P0

))
∈ ψ−1(0)

Recalling commutativity of (3.4), we then see that

Φind

((
L− Im(P0eiAC)

eiA

))
= φ

((
eiA C
0 1

)
,

(
L
P0

))
=

(
L− Im(eiAP0C)

eiAP0

)
Obviously our previously computed 2-form descends to ω = d` ∧ dA.

The action by G on ψ−1(0) is merely gp = (gq, x), that is,(
eia c
0 1

)((
eiA C
0 1

)
,

(
L
P0

))
=

((
ei(A+a) eiaC + c

0 1

)
,

(
L
P0

))
Which descends onto the G action (upon taking the quotient)(

eia c
0 1

)
R×S1

(
L− Im(eiAP0C)

eiA

)
=

(
L− Im(ei(A+a)P0C)

ei(A+a)

)
Which completes the construction of Ind

E(2)
C {P0}.

5. Another Example

SE(3). It will be illuminating to see how Proposition 3.7 can recover

the orbits of SE(3). We start by noting the only normal subgroup is of

the form (
I c
0 1

)
For c ∈ R3. This is Abelian, with Lie algebra(

0 γ
0 0

)
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with γ ∈ R3, and we consider orbits of pairs x = (se3, ke3) ∈ a∗ with

e3 the third standard basis element. The G-action on x|a = ke3 is such

that g(x|a∗) = kAe3, where

g =

(
A c
0 1

)
So that the stabilizer is easily computed as all G elements of the form(

ej(te3) c
0 1

)
that is, rotations about the z axis (t ∈ R) combined with translations

by c ∈ R3. Rotations in the plane correspond to elements of SO(2), so

that Gp := H = SO(2) × R3. Then, we want to consider the H orbit

H(x|h). This will give, for h ∈ H,(
ej(te3) c

0 1

)(
se3

ke3

)
=

(
se3 + kc× e3

ke3

)
And, upon restricting to our Lie algebra, we see that h = R×R3 in the

obvious fashion, so that upon restricting, the term kc×e3 is annihilated

and we are left with a singleton. Hence, as h ∈ H was arbitrary

H(x|h) =

(
se3

ke3

)
Computing H-action on the Cotangent Bundle. The H-action

is abstractly h(p, y) = (ph−1, h(y)). Since our Y = H(x|h) is merely

a singleton, this can be discarded. Recalling our convention, our H-

action is h(q, x) = (qh−1, h(x)), where (q, x) ∈ G × g∗. The coadjoint

action has already been computed previously, so we see(
ej(te3) c

0 1

)((
A C
0 1

)
,

(
L
p

))
=

((
A C
0 1

)(
e−j(te3) −ej(te3)c

0 1

)
,

(
ej(te3)L+ c× ej(te3)P

ej(te3)P

))
=

((
Ae−j(te3) C − Ae−j(te3)c

0 1

)
,

(
ej(te3)L+ c× ej(te3)P

ej(te3)P

))
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And the moment map is computed as the difference

ψ(p, y) =

(
se3

ke3

)
−
(
〈L, e3〉e3

P

)
so that

ψ−1(0) =

{((
A C
0 1

)
,

(
L
ke3

))
| 〈L, e3〉 = s

}
We also have the moment map from T ∗G onto g∗ sending p 7→ pq−1

for p ∈ T ∗qG, that is, (q, x) 7→ (1, q(x)) 7→ q(x). Hence, φ is just the

coadjoint action on x ∈ g∗.

Computing canonical Cotangent Bundle 2-form. To compute

the 2-form on T ∗G, we proceed as done previously. When p ∈ T ∗qG

corresponds to (q, x), we get

〈x, q−1δq〉

We see

δq =

(
δA δC
0 0

)
So that

〈x, q−1δq〉 =

〈(
L
P

)
,

(
AδA AδC

0 0

)〉
Which becomes

〈L, j−1(AδA)〉+ 〈AP, δC〉

Our 1-form becomes

θ = Lj−1(AdA) + APdC

So that the 2-form is merely

dθ = dL ∧ j−1(AdA) + Lj−1(dA ∧ dA) + (dA)P ∧ dC + AdP ∧ dC

Which, in tensor form, becomes

dθ = AijdLi ∧ dAij + LidA
i
j ∧ dAij + PidA

i
j ∧ dCj + AjidPi ∧ dCj
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(summation convention). Restricting the above to ψ−1(0), obviously

dP = 0, and dL3 = 0.

Structure of Ind
SE(3)

SO(2)×R3(se3, ke3). We can compute the image of

ψ−1(0) mod H by using the previous results on SE(3). We already

have a moment map Φ : TS2 → g∗, so we can consider taking an

element mod H, mapping it under Φind, and then taking the preimage

by our previously computed Φ. These spaces must be symplectically

diffeomorphic by 3.7. Using the diagram (3.4), we know that

Φind((p, y) mod H) =

(
AL+ C × kAe3

kAe3

)
Now, taking the preimage by Φ gives

Φ−1

((
AL+ C × kAe3

kAe3

))
=

(
C − AL〈AL,C〉

Ae3

)
So we can characterize the reduction modulo H as((

A C
0 1

)
,

(
L
ke3

))
7→
(
C − AL〈AL,C〉

Ae3

)
With moment map

Φind

((
C − AL〈AL,C〉

Ae3

))
=

(
AL+ C × kAe3

kAe3

)
And we can easily compute our G-action as(
A′ C ′

0 1

)
TS2

(
C − AL〈AL,C〉

Ae3

)
=

(
A′(C − AL〈AL,C〉) + C ′ − A′AL〈A′AL,C ′〉

A′Ae3

)
Which gives us our desired G-space structure.

6. The Poincaré Group

Definition, Lie algebra, and dual pairing. The Poincaré group is

the group of matrices

g =

(
L C
0 1

)
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With L ∈ SO(3, 1)o (the identity component of the Lorentz group) and

C ∈ R3,1. The Lorentz group is the group of matrices that preserve the

Minkowski metric, that is,

g(LX,LY ) = g(X, Y )

where g(X, Y ) = tXtY − xy if X = (tX , x), Y = (tY , y). We will define

our transpose in a way that g(LX, Y ) = g(X,LY ), which is explicitly(
A b
c d

)
=

(
At −ct
−bt d

)
(A ∈ M3(R), b, c ∈ R3, d ∈ R). We see that under this definition

the Lorentz groups consists of matrices L such that LL = Id. It can

be shown that the identity component of this group is explicitly of the

form

exp

((
0 b
b 0

))(
A 0
0 1

)
With A ∈ SO(3), b ∈ R3. Now to find the Lie Algebra of this group,

derive any curve passing through the identity at t = 0:

d

dt

∣∣∣∣
0

exp

(
t

(
0 b
b 0

))(
etj(ω) 0

0 1

)
=

(
j(ω) b
b 0

)
(6.1)

So that the Lie algebra of the Lorentz group consists of matrices

Λ =

(
j(ω) β
β 0

)
With ω, β ∈ R3. This immediately gives the Lie algebra of the Poincaré

group:

g =

{(
Λ Γ
0 0

)
| Λ ∈ so(3, 1), Γ ∈ R3,1

}
Then we immediately can identify the dual g∗ with pairs x = (M,P ),

along with the dual pairing

〈x, Z〉 =
1

2
Tr(MΛ) + PΛ
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Computing the Coadjoint action. Note that G of course acts by

matrix multiplication on g∗. Then, we begin by computing

〈(
L C
0 1

)(
M
P

)
,

(
Λ Γ
0 0

)〉
=

〈(
M
P

)
,

(
L −LC
0 1

)(
Λ Γ
0 0

)(
L C
0 1

)〉
=

〈(
M
P

)
,

(
LΛL L(ΛC + Γ)

0 0

)〉
=

1

2
Tr(MLΛL) + P (L(ΛC + Γ))

=
1

2
Tr(MLΛL) + LPΛC + LPΓ

(6.2)

Now consider the term LPΛC. By direct computation one notes that

this is precisely Tr(ΛCLP ). We also see that

LPΛC = ΛCLP

= CΛLP

= −Tr(LPCΛ)

(6.3)

Hence, combining this with the above gives that

LPΛC =
1

2
Tr((CLP − LPC)Λ)

Continuing (6.2):

1

2
Tr(MLΛL) + LPΛC + LPΓ =

1

2
Tr(MLΛL) +

1

2
Tr((CLP − LPC)Λ) + LPΓ

=
1

2
Tr((LML+ CLP − LPC)Λ) + LPΓ

(6.4)

This gives our coadjoint action as(
L C
0 1

)(
M
P

)
=

(
LML+ CLP − LPC

LP

)
Normal subgroup of the Poincaré group. Similar to the case for

SE(3), the only normal subgroup of the Poincaré group consists of

”boosts” of the form (
I C
0 1

)
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We see that the above computed coadjoint action is much simpler when

restricted to the above normal subgroup (denoted A). We have that

g(x|a) = LP . It is clear that a∗ ∼= R3,1, and in order to begin classifying

orbits, we will need the following

Lemma 6.1. For Pi =

(
pi
Ei

)
∈ R3,1, we have that P1 = LP2 for

L ∈ SO(3, 1)o if and only if P1P1 = P 2P2 and E1E2 > 0 when P iPi > 0.

Proof. ” =⇒ ” : Assume first that P1 = LP2. By definition of the

Lorentz group, we have that P 1P1 = LP2LP2 = P2P2.

Assume now that P2P2 > 0, so that without loss of generality we

can assume P2P2 = 1. If E2 > 0, then E1 > (1 + ||p1||2)1/2 > 0 or

E1 < −(1 + ||p1||2)1/2 < 0. We want to argue that the latter case

is impossible. However, using connectedness, there is a path P (t),

t ∈ [0, 1] connecting P1 and P2, which projects onto a path between

E1 and E2. Everywhere along this path, we see that P (t)P (t) > 0. If

E1 < 0 at any P (t0), then we would see that P (t0)P (t0) < 0, which is

a contradiction. Hence, E1 > 0 as well. The case for E2 < 0 is nearly

identical. When P2P2 = 0 and E2 > 0, we again see that E1 = −||p1||

or E1 = ||p1||. Applying an argument similar to the above,

Now we can prove the converse. We will have multiple cases to

consider. Case 1: Suppose first that P2P2 = 1 > 0 and E2 > 0. We can

complete this to a basis {P2, U, V, W} with UU = V V = WW = −1

and B = (U V W P2) such that BB = I. Then

B

(
0
1

)
= P2

An identical argument shows that there exists another matrix B′ with

B′
(

0
1

)
= P1
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So that P1 = B′BL2. Similarly, when P2P2 = 1 > 0 and E2 < 0, we

can instead connect P1 and P2 to

(
0
−1

)
to conclude that P1 = LP2 for

some L ∈ SO(3, 1)o.

Case 2: Assume P2P2 = −1 < 0. Again, complete to a basis

{P2, U, V, W} with UU = V V = WW = −1 and B = (U V P2 W )

such that BB = I. Then

B

(
e3

0

)
= P2

And, finding B′ for P1 with

B′
(
e3

0

)
= P1

We see that L1 = B′BP2.

Case 3: P2P2 = 0 and E2 > 0. We can find A ∈ SO(3) such that

E2Ae3 = p2, so that

E2

(
A 0
0 1

)(
e3

1

)
= P2

And by identical reasoning as in the previous cases, we see that P1 =

LP2 for some L ∈ SO(3, 1)o. When P2P2 = 0 and E2 < 0, we apply

the above argument for the vector

(
e3

−1

)
instead. Finally, if P2P2 = 0

and E2 = 0, we see that P2 = 0 identically, and hence so does P1. �

The proof of the converse in the above now allows us to begin our

classification of orbits.

Corollary 6.2 (of proof). There is a cross section S1 ∪ S2 ∪ S3 ∪ S4 ∪

S5 ∪ S6 for the coadjoint action of G on a∗, where

S1 =

{
m

(
0
1

)
| m > 0

}
(Timelike)

S2 =

{
m

(
0
−1

)
| m > 0

}
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S3 =

{
n

(
e3

0

)
| n > 0

}
(Spacelike)

S4 =

(
e3

1

)
(Lightlike)

S5 =

(
e3

−1

)
S6 = {0}

7. Computing Stabilizers for each Cross Section

We begin by finding the most general element of SO(3, 1)o in a more

explicit form:

Proposition 7.1. Every element of the Lorentz group is of the form

L =

(
A− uuA+ cosh(b)uuA sinh(b)u

sinh(b)u cosh(b)

)
Where A ∈ SO(3), u ∈ R3 is a unit vector, and b > 0.

Proof. By the opening dicussion on the Poincaré group, we already

have that

L = exp

((
0 c
c 0

))(
A 0
0 1

)
It remains to compute the exponential term. Set ||c|| := b, so that

c = bu for from unit vector u. Then,(
0 c
c 0

)3

= b2

(
0 c
c 0

)
And similarly, (

0 c
c 0

)4

= b2

(
0 c
c 0

)2

Now, setting B :=

(
0 c
c 0

)
, we have:
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exp(B) =
∞∑
n=0

Bn

n!

= I +
∞∑
n=0

B2n+1

(2n+ 1)!
+
∞∑
n=1

B2n

(2n)!

= I +
∞∑
n=0

b2n

(2n+ 1)!
B +

∞∑
n=1

b2n−2

(2n)!
B2

= I +
sinh(b)

b
B +

cosh(b)− 1

b2
B2

=

(
1 0
0 1

)
+

(
0 sinh(b)u

sinh(b)u 0

)
+

(
cosh(b)uu− uu 0

0 cosh(b)− 1

)
=

(
(1− uu) cosh(b)uu sinh(b)u

sinh(b)u cosh(b)

)

(7.1)

Now, take the product:(
(1− uu) cosh(b)uu sinh(b)u

sinh(b)u cosh(b)

)(
A 0
0 1

)
=

(
A− uuA+ cosh(b)uuA sinh(b)u

sinh(b)u cosh(b)

)
�

The above explicit form will allow us to compute the stabilizers for

each part of the cross section much more easily, and the next definition

and proposition will simplify our work for the induction step.

Definition 7.2. Let Xi =

(
ri
ti

)
, i = 1, 2 in Minkowski space. Define

j(X1)(X2) :=

(
j(r2t1 − r1t2) r1 × r2

r1 × r2 0

)
Proposition 7.3. In the above definition’s notation,

X1X2 −X2X1 =

(
j(r1 × r2) r1t2 − r2t1
r1t2 − r2t1 0

)
And for any L ∈ SO(3, 1)o,

Lj(X1)(X2)L = j(LX1)(LX2)
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Stabilizer for S1 and S2. Recalling our definitions for S1 and S2,

note that stabilizers of their elements will clearly coincide, so it suffices

to find just the stabilizer for elements of S1. We have:(
A− uuA+ cosh(b)uuA sinh(b)u

sinh(b)u cosh(b)

)(
0
m

)
=

(
m sinh(b)u
m cosh(b)

)
From which we immediately deduce that b = 0, and hence the stabilizer

consists of matrices (
A 0
0 1

)
A ∈ SO(3)

So that the above is clearly isomorphic to SO(3).

Stabilizer for S3. For the stabilizers of the spacelike and lightlike

particles, we will need more sophisticated methods. First note that in

the notation of 3.7, G/H ∼= G(p), p ∈ S3. We can already see that

this is a connected hyperboloid (being the level set PP = k < 0, which

is homeomorphic to R3. This is simply connected, which is to say its

fundamental group is trivial. We have the short exact sequence (in

multiplicative notation)

1 −→ H −→ G −→ G/H −→ 1

Which gives rise to the long exact homotopy sequence

· · · −→ π1(G/H) −→ π0(H) −→ π0(G) −→ π0(G/H) −→ 1

Since G is defined to be the identity component, π0(G) is trivial as

well. Exactness yields that π0(H) = 1 (since simple connectedeness

gives π1(G/H) = 1). This means that we can find the stabilizer of p in

h and then recover all of H via exponentiation, which is a considerably

easier task.
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Proposition 7.4. Given p ∈ S3, the stabilizer H consists of matrices

of the form
cos(φ) sin(φ) 0 0
− sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1




1 + cosh(|b|)u2
1 − u2

1 (cosh(|b|)− 1)u1u2 0 sinh(|b|)u1

(cosh(|b|)− 1)u1u2 1 + cosh(|b|)u2
2 − u2

2 0 sinh(|b|)u2

0 0 1 0
sinh(|b|)u1 sinh(|b|)u2 0 cosh(|b|)


where u = (u1, u2) is a unit vector and |b| is such that b = |b|u.

Proof. Working in the Lie algebra, we only need to find the set of all

Λ such that Λ(p) = 0. Explicitly,(
j(`) b
b 0

)(
e3

0

)
= 0

From which we immediately find that ` × e3 = 0, and 〈b, e3〉 = 0.

Hence, this consists of all matrices of the form(
j(αe3) b
b 0

)
with α ∈ R and 〈b, e3〉 = 0. Now we want to compute the matrix

exponential of the above. Letting b denote just the 2-dimensional vector

(b1, b2), we see 0 0 b
0 0 0
b 0 0

2

=

bb 0 0
0 0 0
0 0 |b|2


And similarly 0 0 b

0 0 0
b 0 0

3

= |b|2
0 0 b

0 0 0
b 0 0


Allowing easy computation of our exponential asI − uu+ cosh(|b|)uu 0 sinh(|b|)u

0 1 0
sinh(|b|)u 0 cosh(|b|)


Exponentiation of the matrix(

j(αe3) 0
0 0

)
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is standard. Taking the product of these yields the desired stabilizer

H. �

Corollary 7.5. H ∼= SO(2, 1) (and hence, by the 2 − 1 covering

SL(2,R)→ SO(2, 1), H(x|h can be considered an orbit of SL(2,R)).

Stabilizers for S4 and S5. We now consider the case of the lightlike

particles. By identical reasoning as in the previous case (via the long

exact homotopy sequence), we can deduce that H consists of only one

component by noting that G/H ∼= R\{0} (the top/bottom half of

a cone). Hence we can employ the same strategy of finding the Lie

algebra of our stabilizer and then exponentiating.

Proposition 7.6. Given p ∈ S4 ∪ S5, the stabilizer H consists of ma-

trices of the form
cos(φ) sin(φ) 0 0
− sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1




1 0 −b1 b1

0 1 −b2 b2

b1 b2 1− |b|2/2 |b|2/2
b1 b2 −|b|2/2 1 + |b|2/2


with b = (b1, b2) ∈ R2.

Proof. We only need to consider the case for p ∈ S4. Similar to the

spacelike case, we compute(
j(`) b
b 0

)(
e3

0

)
= 0

To find that 〈b, e3〉 = 0, and e3 × ` = b, that is, ` = (`1,−b1, b2) when

b = (b1, b2, 0), so that our Λ element is of the form
0 −`1 −b1 b1

`1 0 −b2 b2

b1 b2 0 0
b1 b2 0 0
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Now we again view b as a vector in 2 dimensions and consider the block

matrix 0 −b b
b 0 0
b 0 0


We see 0 −b b

b 0 0
b 0 0

 =

0 0 0
0 −|b|2 |b|2
0 −|b|2 |b|2


And 0 −b b

b 0 0
b 0 0

3

= 0

Hence we only need compute 3 terms of the exponential series, yielding
1 0 −b1 b1

0 1 −b2 b2

b1 b2 1− |b|2/2 |b|2/2
b1 b2 −|b|2/2 1 + |b|2/2


And the statement of the proposition follows immediately. �

Corollary 7.7. H(x|h) is an orbit of E(2), so that we have that H(x|h) ∼=

TS1.

Stabilizer of S6.

Proposition 7.8. For 0 ∈ S6, H = SO(3, 1)o

8. Computing Ind
SO(3,1)o×R3,1

SO(3) S2

We first set N = T ∗G× S2 ∼= G× g∗× S2. We will not worry about

computing the 2-form here. Note that S2 has an H-space structure by

the beginning examples for the coadjoint orbit of SO(3), with moment

map merely being the inclusion. Using the notation for the definition

of Symplectic induction, we see:
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ψ−1(0) =

{((
L C
0 1

)
,

(
j(su) g
g 0

)
,m

(
0
1

)
, su

)
| u ∈ S2, L ∈ SO(3, 1)

C ∈ R3,1, g ∈ R3

}

Define I :=

(
0
1

)
and consider the second element of the above 4-tuples.

We can decompose it as(
j(su) g
g 0

)
= s

(
j(u) 0

0 0

)
+

(
0 g
g 0

)
Now associate to u the 4-vector U :=

(
u
0

)
and g the 4-vector G :=(

g/m
0

)
. Observe that II = 1, IU = 0, and UU = −1, and(

j(su) g
g 0

)
= sj(I)(U) +m(GI − IG)

Then, letting ` denote an element of the Poincaré group, every tuple

of ψ−1(0) is of the form (`, sj(I)(U) + m(GI − IG),mI, su). Letting

h ∈ SO(3), h will act on the above tuples via

h(`, sj(I)(U)+m(GI−IG),mhI, su) = (`h, sj(I)(hU)+m(hGI−IhG),mI, shu)

Also, when ` =

(
L C
0 1

)
is an element of the Lorentz group, we have

moment map φ : ψ−1(0)→ g∗ with

φ
(
(`, sj(I)(U)+m(GI−IG),mI, su)

)
= (sj(LI)(LU)+m

(
(LG+C)LI−LI(LG+ C),mLI)

This allows us the following

Theorem 8.1. Let V denote the space of triplesXT
J


with T and J 4-vectors such that TT = 1, TJ = 0, JJ = −1, and X

a point in Minkowski space. Then there is a G-equivariant surjection
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Φ : ψ−1(0)→ V such that the following diagram commutes:

ψ−1(0)

Φ
��

// N

φ

��
V

µ // g∗

where

µ

(XT
J

) =
(
sj(T )(J) +m(XT − TX),mT

)
In particular,

Φ(
(
(`, sj(I)(U) +m(GI − IG),mI, su)

)
=

LG+ C
LI
LU


The proof of the above will be done in several steps. We must first

define how the Poincaré group will act on V . This definition is very

natural, however, as we merely have(
L′ C ′

0 1

)XT
J

 =

L′X + C
L′T
L′J


The advantage to the above characterization is that we can instead

consider Ind
SO(3,1)
SO(3) S2 as the quotient of V by a suitable equivalence,

which will be amde explicit later.

Proof. Surjectivity of Φ: To show surjectivity of Φ, let

XT
J

 ∈ V .

Since TT = 1, we can find L ∈ SO(3, 1) such that LI = T . Now, find

C ∈ R3,1 such that LX −LC =

(
b
0

)
:= B for b ∈ R3. By definition of

the Lorentz group, L must preserve the Minkowski metric. We already

know TJ = 0, and since LI = T , we deduce that LJ =

(
u
0

)
:= U for

u ∈ R3, |u| = 1. Hence,

Φ

(((
L C
0 1

)
, sj(I)(U) +m

(
BI − IB

)
,mI, su

))
=

XT
J
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Showing surjectivity.

Commutativity of the Diagram: Let us factor through the top

right corner. Then φ is merely the action map on
(
(`, sj(I)(U)+m(GI−

IG),mI, su)
)
. We compute:

φ
(
(`, sj(I)(U) +m(GI − IG),mI, su)

)
= `

((
sj(I)(U) +m(GI − IG)

mI

))

=

(
sLj(I)(U)L+m(LGLI − LILG) +m(CLI − LIC

mLI

)
=

(
sj(LI)(LU) +m((LG+ C)LI − LI(LG+ C))

mLI

)
(8.1)

Likewise, we can compute travelling along the bottom left corner as

µ ◦ Φ
(
(`, sj(I)(U) +m(GI − IG),mI, su)

)
= µ

(LG+ C
LI
LU

)

=

(
sj(LI)(LU) +m((LG+ C)LI − LI(LG+ C))

mLI

)(8.2)

So the diagram does commute.

G-equivariance of all maps involved: Equivariance over the top

right corner is obvious by construction. Along the bottom corner, let

`′ be an element of our Poincaré group. Then,

Φ(`′
(
(`, sj(I)(U) +m(GI − IG),mI, su)

)
)

=

L′LG+ L′C + C ′

L′LI
L′LU


=

(
L′ C ′

0 1

)LG+ C
LI
LU


= `′Φ

(
(`, sj(I)(U) +m(GI − IG),mI, su)

)
)

(8.3)
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Equivariance of µ is similarly trivial.

�

Define U to be the quotient of V by the relationXT
J

 =

X ′T ′
J ′

 ⇐⇒ X −X ′ = λT
T = T ′, J = J ′

We can formally denote such elements as

X + RT
T
J

.

Theorem 8.2. Ind
SO(3,1)o×R3,1

SO(3) S2 has the structure of a Hamiltonian G-

space via the identification Φ : ψ−1(0) → V → U ∼= Ind
SO(3,1)o×R3,1

SO(3) S2.

Given x :=

X + RT
T
J

 ∈ U , set Ω := j(T )(J). Then we have a

symplectic 2-form

σ(δx, δ′x) = −sTr(δΩ · Ω · δ′Ω) +m(δXδ′T − δ′XδT )

Where G = SO(3, 1)o × R3,1 acts on U via(
L C
0 1

)X + RT
T
J

 =

LX + C + RLT
LT
LJ


Proof. The proof of this follows mostly from the work of Souriau and

3.7. �

Setting s = 0 in the above, we are inducing a manifold from the

origin. This physically represents a particle of mass m with 0 spin.

Reasoning identical to the above leads to the simpler structure of the

following:

Corollary 8.3. Let V denote the space of points of the form

(
X + RT

T

)
with X a point of Minkowski space and I a 4-vector with II = 1. Then,
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V ∼= Ind
SO(3,1)o×R3,1

SO(3) {0}, where ψ−1(0) consists of all tuples (`,m(GI −

IG),mI) with

Φ
(
(`,m(GI − IG),mI)

)
=

(
LG+ C + RLI

LI

)
(same definitions as above).

We have symplectic 2-form

σ(δx, δ′x) = m(δXδ′T − δ′XδT )

and G-action(
L C
0 1

)(
X + RT

T

)
=

(
LX + C + RLT

LT

)
9. Computing Ind

SO(3,1)×R3,1

E(2) {se3}

We now proceed to discuss the case of lightlike particles and map

them onto a framework similar to that given above. We begin by

computing ψ−1(0) for se3 for s ∈ R (that is, we are considering the

degenerate cylinder along the z-axis). It is straightforward to find

ψ−1(0) =

{((
L C
0 1

)
,

(
j(se3) b
b 0

)
,

(
e3

1

)
, se3

)
| s ∈ R, L ∈ SO(3, 1)

C ∈ R3,1, b ∈ R3, 〈b, e3〉 = 0

}
Now, redefine s to be its absolute value and take the sign of s to be

denoted by χ (the helicity). Denote by E the matrix

(
j(e3) 0

0 0

)
.

Recall that b ∈ R3 is of the form (b1, b2, 0). Associate to b the 4-vector(
b
0

)
. Define I :=

(
e3

1

)
. One easily verifies(

0 b
b 0

)
= BI − IB

So we have a decomposition(
j(se3) b
b 0

)
= sχE +BI − IB

Leading to the following:
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Theorem 9.1. Let V denote the space of triplesXT
Ω


with T a 4-vector such that TT = 0, ΩI = 0 and 1

2
Tr(ΩΩ) = 1 and X

a point in Minkowski space. Then there is a G-equivariant surjection

Φ : ψ−1(0)→ V such that the following diagram commutes:

ψ−1(0)

Φ
��

// N

φ

��
V

µ // g∗

where

µ

(XT
Ω

) =
(
sχΩ + η(XT − TX), ηT

)
(η denotes the sign of the energy). In particular,

Φ(
(
(`, sχE + (BI − IB), I, se3)

)
=

LB + C
LI
LEL


Before the proof, note that we have the action(

L C
0 1

)XT
Ω

 =

LX + C
LT
LΩL


of the Poincaré group on V .

Proof. Surjectivity of Φ: Let

XT
Ω

 ∈ V . We can find L ∈ SO(3, 1)

such that LI = T . Since L preserves our Minkowski metric, we deduce

that if J := 1
2

(
e3

−1

)
, then Ω = j(LI)(LJ) = Lj(I)(J)L. By direct

computation, one easily verifies that j(I)(J) = E, so Ω = LEL.
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Finally, we can obviously choose C such that LX − C =


b1

b2

0
0


for some real numbers b1, b2. Hence, defining this to be B, we get

surjectivity of Φ.

The proof of commutativity and equivariance follows almost identi-

cally to the timelike case.

�

We now define a quotient U of V by the following equivalence:

XT
Ω

 =

XT
Ω

 ⇐⇒ ∃Z s.t IZ = 0
X ′ = X + ηχsZ

I ′ = I
Ω′ = Ω + ZI − IZ

Then, we have by Souriau and the above:

Theorem 9.2. Ind
SO(3,1)o×R3,1

E(2) {se3} has the structure of a Hamiltonian

G-space via the identification Φ : ψ−1(0)→ V → U ∼= Ind
SO(3,1)o×R3,1

E(2) {se3}.

Given x :=

XT
Ω

 ∈ U , we have a symplectic 2-form

σ(δx, δ′x) = −χsTr(δΩ · Ω · δ′Ω) + η(δXδ′T − δ′XδT )

Where G = SO(3, 1)o × R3,1 acts on U via(
L C
0 1

)XT
Ω

 =

LX + C
LT
LΩL


Similar to the case for a particle with mass, we can set s = 0 and

induce from the origin. This corresponds to a massless particle with 0

spin, and the Ω term drops out of the computations.
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We can let V be the space with tuples

(
X
T

)
with TT = 0. Quotient

by the equivalence (we will define this quotient to be U)(
X
T

)
=

(
X ′

T ′

)
⇐⇒ ∃Z s.t ZT = 0

X ′ = X + λZ, λ ∈ R

It turns out that this is Ind
SO(3,1)o×R3,1

E(2) {0}. ψ−1(0) is already of the

form (`, BI − IB,E), with map Φ : ψ−1(0)→ V defined as expected:

Φ(`, BI − IB, I) =

(
LB + C
LI

)


